A System for Outlier Detection of High Dimensional Data
نویسندگان
چکیده
In high dimensional data large no of outliers are embedded in low dimensional subspaces known as projected outliers, but most of existing outlier detection techniques are unable to find these projected outliers, because these methods perform detection of abnormal patterns in full data space. So, outlier detection in high dimensional data becomes an important research problem. In this paper we are proposing an approach for outlier detection of high dimensional data. Here we are modifying the existing SPOT approach by adding three new concepts namely Adaption of Sparse Sub-Space Template (SST), Different combination of PCS parameters and set of non outlying cells for testing data set. KeywordsData mining, Projected outlier, Stream projected outlier detector, Sparse subspace template (SST), Base cell summary (BCS), Projected cell summary (PCS).
منابع مشابه
Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator
The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...
متن کاملOutlier detection for high dimensional data pdf
Is particularly useful for high dimensional data where outliers cannot be found.High dimensional data in Euclidean space pose special challenges to data. In about just the last few years, the task of unsupervised outlier detection has found.Outlier detection is an outstanding data mining task referred to open pdf with mac word class="text" href="https://tokiqivy.files.wordpress.com/2015/06/opel...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملOutlier Detection and Visualisation in High Dimensional Data
The outlier detection problem has important applications in the field of fraud detection, network robustness analysis, and intrusion detection. Such applications have to deal with high dimensional data sets with hundreds of dimensions. However, in high dimensional space, the data are sparse and the notion of proximity fails to retain its meaningfulness. Many recent algorithms use heuristics suc...
متن کاملA Web-based Interactive Data Visualization System for Outlier Subspace Analysis
Detecting outliers from high-dimensional data is a challenge task since outliers mainly reside in various lowdimensional subspaces of the data. To tackle this challenge, subspace analysis based outlier detection approach has been proposed recently. Detecting outlying subspaces in which a given data point is an outlier facilitates a better characterization process for detecting outliers for high...
متن کامل